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L O C A L  I N S T A B I L I T Y  OF T H E  W A L L S  O F  B O R E H O L E S  I N  D R I L L I N G  

IN C O M P R E S S I B L E  H A R D E N I N G  E L A S T O V I S C O P L A S T I C  M E D I A  

A. N. S p o r y k h i n  a n d  A.  S. C h e b o t a r e v  UDC 539.374 

The local instability of borehole walls in complex compressible media is studied within the 
framework of exact three-dimensional equations. NumeTical experiments were performed for 
particular materials. The effect of the dilatancy rate, the viscosity, the gravity parameter, and 
Poisson's ratio on the critical parameters is estimated. 

It is well known that  the solution of the problems of rock mechanics related to drilling of oil and gas 
boreholes is reduced to the formulation and solution of the problems of local instability of the rock zone 
adjacent to the shaft in the presence of elastoplastic deformations [1-4]. This is due to the fact that  even at 
depths smaller than 1 km, the stresses around vertical workings and boreholes exceed the ul t imate strength 
of tile rock; this results in inelastic deformation before the local loss of elastic stability occurs. Evidently, to 
study the problem of stability of a rock working, one should use more complicated models tha t  describe the 
behavior of rocks most adequately [4]. In this paper, in contrast to [3], the local instability of the rock in 
tile shaft zone is modeled by relations of a compressible elastoviscoplastic body with translational hardening 
[5 -7]. 

In this case, the loading function is written in the form 

F v/(S  c(4)p' J p' ; -  " = - - ~(e~) )(s~ c(4)~' - ~(4P') - ~ K ,  (1) 

and the relations of the associated flow law have the form 
j p' -j  p' 

~-~  :-- Z-; / (2) 

Here c~ is the dilatancy rate, c is the hardening coefficient, 77 is the viscosity coefficient, K is the yield point, 
"J - a6~ is (e~) p' and (&~)P' are the deviatoric plastic-strain and plastic strain-rate tensors, a = (1/3)ak k, S~ = a i 

the deviatoric stress tensor, 6~ is the Kronecker symbol, ~ is the fundamental tensor, and ~ is a positive factor. 
The subscripts and superscripts i, j ,  and k run from 1 to 3 and the superscript p' denotes the deviatoric part 
of the tensor in the plasticity region. Summation over the repeated indices is performed. Relation (2) takes 
into account the associated compressibility of the material, which is related to the occurrence of plastic shear 
strains in the body. 

A stability analysis of the prebuckling state of a body of volume V which is characterized by the 
0 0 " 0 0 

displacement vector ui(xk,  t), the stress tensor ~ (xk, t), and the vector of the body Xi and surface Pi forces 
reduces to the solution of a system of differential equations in variations under the corresponding boundary 
conditions [8]. 

The equations of equilibrium for the plastic Vp and elastic V e regions have the form 

g7 i WaU .~ v~(~} + ~ _  , ,  + x ~  - ps2w 0, s = i~ ,  (3) 
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where the symbol V denotes covariant differentiation. 
The boundary conditions at the outer surface S~ (and, hence, S~) are 

@ + = ps, (4) 

o k o k 
Here we have pj = pk V u s and X s = X k  V u s in the case of a "follower" load and PS = XS = 0 in the case of 
a "dead" load. Here and henceforth, the superscripts p and e refer to quantities corresponding to the plastic 
and elastic regions, respectively, and the circle atop refers to the components of the unperturbed prebuckling 
state. 

The relationship between the amplitude values of the stresses and displacements in the plastic and 
elastic regions can be written in the form 

o) = a,~g~V~ukg~ + (1 - ~)g"C~.(Vi~ s + Vsu, ) (5) 

(no summation over i and j) .  In the plastic region, the coefficients aia and G} have the form 

~ o i E 
E 5i~ + fa~Bii  +Ai i ,  Cj  - , )  = G (6) 

aia 1 + u 2(1 + 

(no summation over i and a),  where 
o o 

o 

A i j  - -  1 -+ v "3 ij (a-~)2D Aij - a a / '  B i j  - -  1 + v k D a a  + AiS, a = v ~ K  - aa,  

o 

o o 1 + .  
s  3f#(2UaaE-1) UE + l b i s '  A = f l s f i j ,  B = I + ~ C ,  C = c + s T i ,  

3 A C ( 2 u -  1) o o D = 1 + ,  3(2u - 1 )BA  F, = 1 f , j  - c$~j.  
T (aa)ZE , (aa)2E , = Sij  

In the elastic region, the coefficients ai~ and G} are determined by relations (6) for Aij = Bij =- O, i.e., 

i aic, = (A + 2tt)gi~, Gj = #. (7) 

In Eqs. (6) and (7), s and # are the Lam~ parameters, E is Young's modulus, a n d ,  is Poisson's ratio. 
We note tha t  the representation (5) is possible only if the prebuckling state is uniform or depends on one 
variable. 

The continuity conditions at the elastoplastic boundary F have the form 

[(a3 + g~V%j)nJ]  = 0, [u i ]=  0. (8) 

Equations (3)-(8) form a closed system of equations for analysis of stability problems where a boundary 
exists between the regions of elastic and plastic behavior of the material during loading. 

Let a round borehole drilled vertically in rock be filled with a liquid of density % and its walls be 
subjected to the pressure q = 7,h, where h is the depth. 

The pressure q is called the backpressure of a drilling fluid tha t  prevents the change in shape and 
dimensions of the cross section of the boreholes. We model [9] the rock mass with a borehole by a weightless 
infinite plane with a round hole of radius a whose contour is loaded by the uniformly distributed pressure q. 
At infinity, the stresses in the plate tend to 7nh, where "Yn is the density of the rock. The stress distribution 
in the unperturbed rock mass is assumed to be hydrostatic: p = "Tnh. 

In determining the stress and strain components in the prebuckling state in the axisymmetric case, 
all the functions are written in the form of series in powers of the parameter a,  i.e., the dilatancy rate: 

= (")," "}" {O'z 3 , e iS ,  e i j ,  ~ . . . .  } , �9 
n=-O 
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The zeroth approximation corresponds to the incompressible elastoviscoplastic medium in the region 
V p and has the form [8]: 

- -  in the plastic region (a* < r < 1), 

~r(01 = - -q - -  c a 4 e l n  ~ + j ~  , 4 <~ -- ~ -- I 
c + 2 G  

X (4G+4GIn r c ~2) X = - -  - - +  , u (~  s i g n ( q - p ) ;  o) - q  c + 2G a* + a .2 2 G r '  X = 

- -  in the elastic region (1 < r < co), 

X (z(00) X u(0) = X 
(r(~ = - P  + -~ '  = - P  r 2' 2Gr"  

Here the quantities having the dimension of stress are divided by k = v ~ K / 2 ,  whereas the quantities having 
the dimension of length are divided by the radius of the elastoplastic boundary  in the zeroth approximation 
r (~ The quantity a* = a / r  (~ is determined from the equation ]q - p[(c + 2G) - 2G + 4Gln a* - c / a  .2 = O. 

We write the first approximation in the form of the following relations: 
- -  in the plastic region (a* < r < 1), 

_ ~ ( l n r  1 ) ~(~1 = c2 + [~ In ~" + ~ + b ( ln  T) 2 ~,~-# + ~ , 

~ )  = c2 + ~ In ," + ~ + ~ + b In ," ~ In ," + I - ~: 472 2,-2 - + b ) ,  I . l  

where 

u(1) _ _ _  

- -  in the elastic region (1 < r < oc), 

r 2 ,  

A2c  
= 2qA + A 2 + ~a.2 - 2A 21n a*, 

1 ( i n r  2 )  C1 2 V - - "  

c + 2 G ~  7" r '  

a ~ l ) =  C3 u0 ) =  Ca 
r 2"' 2 G r '  (10) 

= C 1 A c  Ac  b = 2 A  2, / ~ =  A c  
2c + 4 G '  2c + 4 G '  

Ct = (2G + A c  12a . 2 -  a .2 ]'~ - 1 ( ~ G  -k- A c ( 1  - a .2) - / l n a *  1 1 /)  (In a*)2), 
2a '2(c  + 2G) + /} lna*  - E[~a2-  ~ 4a ~ + 4 )  + -2-" 

B i n  a* + ~ ( i n  a* + 1 ) - O (l_n a*) 2, 63  = --a 2GC~. 
C2 - 2a.2 \2 - -~-  ~a* 2- c + 2G 

In the first approximation, the equation for the radius rsl of the plastic boundary has the form 

~ r  1 aa__ b ~ (1)e (1)p r , ,  (~(o ')e a ~ , ) v ) / (  d )v . (,)e 
dr  / I r=l  = - -  (c + 2G) ~=1" - -  _ _  (70 8~G~ (11) 

In determining the zeroth and first approximations, we used the equations of equilibrium, the plasticity 
condition (1), the relations of the associated law of plastic flow (2), the relations between total, elastic, and 
plastic strains, the general equations of the theory of elasticity, the boundary conditions, and the conjugation 
conditions for the solutions in the elastic and plastic regions. 

In accordance with (4), the boundary conditions on the borehole surface and the conditions of pertur- 
bat ion decay as r ~ ~ are written in the form 

( 1 )I 
a u u , r  + a12 -r v,o + a12 -r u + alaw,z r=a = O, (rV,r + u,o - v )  ~=a = O, (W,r + u,z) r=a = O, 

u ----~ 0, v s  w ---* 0. 
7" - ' *O C  ?" "-'~ r ~  
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According to (5), for the amplitudes of displacement and stress perturbations, the conjugation condi- 
tions (8) at  the elastoplastic boundary % take the form 

= -~- --~ - u +  a 1 1 + 0 "  1 U , r - ' } - a 1 2 - V , O  + a 1 3 W , z  = O, [~] 0, [~] 0, [~] 0, ~ 2  r 

(~2) 
_-o. 

In the quasistatic formulation with allowance for (5), Eqs. (3) are reduced to the following system of 
partial differential equations with variable coefficients: 

( !  80)) + ux (an,t 1 U a12,1 - ~ (a22 + - - r  

1 2 o 
+ u,oo ~ (Ol + ao) 

1 (a~ + ~12) 
+ V,rO r 

(al2 + a n  - a21+ 80) ) + ux~(all + Sr) 

o ) 
+ ~,~z(V~ + ~ )  + ~,o ; a m  - 7~ (a~a22 + 28o) 

( ) +w,z  a13,1+-(a13--a23)  "4-Wrz(G l +a13)=O,  
r 

1 
28o)) u,ro(am + G~) (13) ( G~'I + r (a22 + G 2 + + U,O 

- 2,1 + - ( - a ~  + 8o) + v r~(a~ ~ + a~ + 8o) + v F ( a ~  + ~_-) 

+ ~,oo ~ (a22 + 8o) + ~z.r(a~ + 8~) + ~o~(a~ + a23) = 0, 

U,z G~, 1 + _1 (a32 + G~) + U,rz(aal + G~) + V,Oz - (a32 + G23) 
r r 

( 1 ) 1 o  _~ o 
+ w ~  a~ ~ + - (a~ + 8o) + w ~ ( a 3  + G~) + w,oo (a~ + 8o) + w~(aa3 + ~ )  = 0. 

In the elastic region, the equations of equilibrium (13) are also satisfied, where it is necessary to set 
Aij = Bij  = 0 for the coefficients ai~ found from (6), as was pointed out above. 

We seek a solution of Eqs. (13) in the form u = AP(r) cos (m0) cos (nz), v = BP(r) sin (m0) cos (nz), 
and w = CP(r) cos (m0) sin (nz), where m and n are the wavenumbers. 

Using the functions A p, B p, and CP, we write system (13) in the form 

AP~I + A'P~2 + A"P~3 + BP~4 + B'p~5 + CP~6 + C'p@ = o, 

APes + A'P~9 + BP~Io + B'P~n + B"P~n + CP~13 = 0, (14) 

AP~14 + A'P~15 + BP~16 + CP~IT + C'P~ls + C"P~19 = 0. 

Here the primes at the functions Air) ,  B(r ) ,  and C(r) denote differentiation with respect to r. 
For the region V e, the functions A p, B p, and C p in system (14) should be replaced by A e, B e, and C e, 

respectively. 
The  boundary conditions for r = a and the conditions of perturbation decay as r ~ cc become 

APal 2 1 1 - + A'Pall + BPrn - a12 + CPnal3 = O, APm + B p - B'Pr = O, APn - -  C t p  -~- 0, 
r r 

Ae(r) --* O, Be(r) --+ O, Ce(r)  --* O. 

The conjugation conditions (12) at the elastoplastic boundary rs have the form 

A a12 + A ' ( an  + 8~) + B m a n  + Cnal3  = O, 
r r 

- A m G ~  + B(28~ - G~) + B'r(G~ + 8~) = O, - A n G ~  + C'(G~ + 8~) = O. 

In relations (14)-(16), the following notation is introduced: 
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a12,1 a22 -b ~r~ 
r r 2 

m 2 
+ a 2) - n2(G 3 + o'3), r 2  ( G 2  ~  03  ~2 : a l l , 1  + 

a12 + a l l  -- a21 + ~2 
r 

O l [a12_,l G21 + a22 + 2~~'~ rn 
~ 3 = a l l + a  i, ~4----m/ ) ,  ( 5 = - - ( G 1 2 + a 1 2 ) ,  

\ T r 2 r 

~6=' r t (a l3 , l  zr - a 1 3 - a 2 3 ) ,  ~ 7 - ~ n ( ~ i ~ - a l 3 ) ,  ~8 : - t ( ~ l l  + 
7" 

( C  1 G~ + 82 ~ m ~ " a2o + ~22 ~9 -~ -rn,(C21 -~ a21), ~10 ~- - 2,1 Jr ~- " 
r 'F 

:_  -Jr- 0"2, 

r 

+ + (17) 

o2 ~12 = r(G21 + or2), ~13 = -ran(a23 + G3), 

(G 1 + a32)  14=-n 3 , 1 + - -  , 
T 

- -mn 

_ m  2 
~17 = - -  (a22 + G 2) - n2(~33 + a23), ~18 = G 13,1 + ---'---=,G!t + ~2 ~19 = G31 + cq.~ 

T r 
o o o 

For the coefficients ~i (i = 1 . . . .  ,17), the parameters  err, ae, and az in the region VP are determined 
by formulas (9) and aij and G} by (6) and those in the region V e are determined by formulas (10) and (7), 

respectively. 
Since we did not succeed in finding an exact analytical solution of the boundary-value problem (14)- 

(17), we shall seek an approx imate  solution by the finite-difference method. In this method,  the derivatives 

of  the functions A(r),  B(r), and C(r) are replaced by finite differences. As a result, we have a homogeneous 

sys tem of linear algebraic equations, which can be writ ten in matr ix  form: {Xij}{Y/} = {0}. It  follows tha t  
the critical parameters  (loads) are determined from the solution of the matrix equat ion 

det{Xij} = 0. (18) 

In calculating the determinant ,  it is necessary to take into account not only the prebuckling stress-strain 

s ta te  [sec Eqs. (9) and (10)], bu t  also Eq. (11), which determines the elastoplastic bounds Minimization 
should be performed with respect  to the difference-grid size h, the wavenumbers over the contour m and along 

the generatr ix  n, the paramete rs  of the material and s t ructure  Aj, and the quanti ty s. Thus, we arrive a t  the 

problem of multidimensional optimization of the quanti ty p depending on s, m,  and n under the condition 

tha t  F(p, s, m, n, Aj) = 0. 
The  problem of determining the critical load for fixed h and Aj was solved in two stages. At the 

first stage, the region in the space of the parameters  p, s, m, and n, in which the sign of the function 
F(p, s, m, n, h, Aj) changes, was determined for 0 <~ s < cx~, 0 < p <: 1, and m, n -- 1, 2, etc. At the second 

stage, the value of p.  = min p(s ,m,n)  such that  F (p . ,  s . ,  rn. ,n. ,  h, Aj) = 0 was calculated. Opt imizat ion 
$,m,~ 

with respect to the pa ramete r  h was performed as follows. The calculation of the critical load is te rminated  

if after a twofold decrease in the grid size, the difference between the resulting values of the load corresponds 

to the specified accuracy. The  results of the numerical experiments  are given in Figs. 1-3. 
Figure 1 shows the critical pressure p.  as a function of the gravity pa rame te r  q. for E l k  -- 100, 

T0 -- 0.1, and co = 0.1. Curves 1-3 refer to v = 0.3, curves 1 '-3 ~ to v =  0.5, curves 1 and 1 ~ to a - -  0.1, 
curves 2 and 2 ~ to a = 0.4, and curves 3 and 3 ~ to a = 0.8. The  value of the critical pressure increases as the 

gravi ty  paramete r  is increased and it increases significantly (by 10-15%) as Poisson's  ratio is increased. 
Figure 2 shows the critical value of the gravity pa ramete r  q. for a free working (the value of the load 

a t  infinity at which the free working loses stability) versus the dilatancy rate a for E / k  = 100, co = 0.1, and 

v = 0.3 (curve 1 and 2 refer to ~?0 = 0.1 and 0.001, respectively). I t  is clear from Fig. 2 that  the critical load 

decreases as the viscosity increases and, in this sense, the viscosity can be regarded as a destabilizing factor 

in the medium. 
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Figure 3 shows the ratio of the radius of the elastoplastic boundary R to the radius of the working 
R0 versus the gravity parameter q. for a free working. Curves 1-5 refer to a = 0.70, 0.55, 0.40, 0.25, and 
0.10, respectively, for E / k  = 100, ~?0 = 0.1, co -- 0.1, and v --- 0.3. One can see that the radius of the 
elastoplastic boundary increases with increase in the gravity parameter and dilatancy rate. The curves in 
Figs. 1-3 correspond to dimensionless values of the mechanical parameters of the materials whose properties 
are similar to those of allegerit and coal. 
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